If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10t^2+60t+6=0
a = 10; b = 60; c = +6;
Δ = b2-4ac
Δ = 602-4·10·6
Δ = 3360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3360}=\sqrt{16*210}=\sqrt{16}*\sqrt{210}=4\sqrt{210}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{210}}{2*10}=\frac{-60-4\sqrt{210}}{20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{210}}{2*10}=\frac{-60+4\sqrt{210}}{20} $
| 6x+2+2x=-70 | | 55=27^x | | 7b+9b=4 | | 5+x-6x=-50 | | 4x2+7=-9 | | 7x+2-4x=9+2x-5 | | 12(2x+1)=132 | | x+(x+10)(x+5)=180 | | 3y=2-4y=6 | | -4=k+3/2 | | 14/x+6=7/2 | | 14/(x+6)=7/2 | | -4(1+r)=-16 | | 4/(x+6)=7/2 | | 3/4w+3=7/4w | | -6+24y=-48 | | 9-(x=5)=9x-6 | | 9-7h=7h-5 | | 9-x+5=9x-6 | | x+13=5x-43 | | 3x-4=4x=2 | | 9=y+4 | | 382=4a-7(7a+6) | | √6x+7-9=x-7 | | w/5+11=16 | | 4x+8=2x+7+2x–20 | | -3x=4=2x=24 | | 5x-8=50x+1 | | -(5z+12=18 | | (6/3b)-(4/3b)=0 | | 2x=5=5x-4 | | 30=5(x+6) |